1. 电流的发展
根据欧姆定律I=U/R可知,电流的大小取决于导体两端的电压U和导体电阻R的大小,所以,既便是锂电池同样大的体积,如果导体电阻的大小不同,电流的大小也就不同。例如,用锂电池对两个并联着电阻值不同的灯泡供电,其亮度就不同,原因是流过灯泡的电流不同。
目前根据实验情况看没有明确的关系;一般来说体积大些的锂电池容量会相对大些,但也不是绝对的;有的锂电池体积差不多,容量有大有小,这个与外包层厚薄和电池内部材料有关
锂电池的倍率与容量的关系用公式表示:倍率*容量=电流,即当电流相同时,倍率与容量的大小成反比,当容量相同,速率与流的大小成正比。
动力锂电池可以放电的倍率更高。以磷酸亚铁锂材料的动力锂电池和普通的锂电池为例,虽然整个正负极材料体系和构造都是一样的,但是动力性锂电池的正负极材料颗粒比普通型更加细小(增大表面积,加快化学反应速率),采用的隔膜材料以及电解液导电性能更好,另外动力性在正负极引出的极耳等也比普通类型的更多(减小极耳内阻和满足更大电流)。同个体积的18650锂电池,容量不一样,材料体系不一样,磷酸铁锂一般1000多,三元2200左右,钴酸锂2600,最高的是nca,3200左右。
2. 电流发展人
1、电是被美国的科学家富兰克林发明的。
2、1732年,美国的科学家富兰克林(Benjamin Franklin,1706~1790)认为电是一种没有重量的流体,存在于所有物体中。当物体得到比正常份量多的电就称为带正电;若少于正常份量,就被称为带负电,所谓“放电”就是正电流向负电的过程(人为规定的),这个理论并不完全正确,但是正电、负电两种名称则被保留下来。此时期有关“电”的观念是物质上的主张。
3、1752年,富兰克林提出了风筝实验(。其他科学家在实验中,将系上钥匙的风筝用金属线放到云层中,被雨淋湿的金属线将空中的闪电引到手指与钥匙之间,证明了空中的闪电与地面上的电是同一回事。后来他根据这个原理,发明了避雷针。
4、富兰克林让别人做了多次实验,进一步揭示了电的性质,并提出了电流这一术语。富兰克林对电学的另一重大贡献,就是通过设计1752年著名的风筝实验,“捕捉天电”,证明天空的闪电和地面上的电是一回事。
扩展资料:
1、物质中的电效应是电学与其他物理学科(甚至非物理的学科)之间联系的纽带。物质中的电效应种类繁多,有许多已成为或正逐渐发展为专门的研究领域。
2、电的发现和应用极大的节省了人类的体力劳动和脑力劳动,使人类的力量长上了翅膀,使人类的信息触角不断延伸。电对人类生活的影响有两方面:能量的获取转化和传输,电子信息技术的基础。
3、电的发现可以说是人类历史的革命,由它产生的动能每天都在源源不断的释放,人对电的需求夸张的说其作用不亚于人类世界的氧气,如果没有电,人类的文明还会在黑暗中探索。
3. 电流的由来
电的由来
1、古代电的发现
早在对于电有任何具体认知之前,人们就已经知道发电鱼(electric fish)会发出电击。根据公元前2750年撰写的古埃及书籍,这些鱼被称为“尼罗河的雷使者”,是所有其它鱼的保护者。大约两千五百年之后,希腊人、罗马人,阿拉伯自然学者和阿拉伯医学者,才又出现关于发电鱼的记载。
2、电的近代发现
1752年6月,自学有成的本杰明·富兰克林做了一个古今闻名的风筝实验;他与儿子在雷雨中放风筝,将空中的闪电吸引过来,在风筝线另一端捆绑的一只金属钥匙与富兰克林的手之间,产生一系列的电花,他同时感受到麻电的滋味,这证实了闪电是电的一种现象。
富兰克林又做实验发现了电荷守恒定律,即在任何孤立系统里,总电量不变。
3、人工发电的发明
1831年,麦可·法拉第与约瑟·亨利分别独立地发现了电磁感应──磁场的变化可以生成电场。1865年,詹姆斯·麦克斯韦将电磁学加以整合,提出麦克斯韦方程组,并且推导出电磁波方程。由于他计算出来的电磁波速度与测量到的光速相等,他大胆预测光波就是电磁波。
1887年,海因里希·赫兹成功制成并接收到麦克斯韦所描述的电磁波。麦克斯韦将电学、磁学与光学统合成一种理论。
火的由来
首先声明,火不是发明出的,它是然界的一种现象。
至于中国最早能够人工取火的人,传说是燧人。
燧,就是人工取火的意思。
中国最早使用火的部落,应该是第二部落。年代可能在五十万年以上。
注:传说中,燧人部落的年代约五万至十万年前。炎帝正名应为神农,它是最早进行农耕的部落,并不是最取火的部落。
4. 电流的方向
电流的方向规定正电荷定向移动的方向是电流方向。此外,要注意负电荷的情况,如果负电荷定向移动,那么负电荷运动的反方向是电流的方向。电解液中有正负离子,可能出现这种情况。
电流的实际方向是正电荷移动的方向。
电学上规定正电荷定向流动的方向,为电流方向。工程中以正电荷的定向流动方向为电流方向,电流的大小则以单位时间内流经导体截面的电荷Q来表示其强弱称为电流强度。
在历史上,先认识到的是正电荷,当时规定,正电荷的方向就是电流的方向。现在延续了当时的说法。实际上,在金属导体中,可以自由移动的是负电荷,也就是电子。当时,在电解液中,正电荷和负电荷是都移动的,只是定向移动的方向相反。在半导体中,有些是正电荷移动,有些事负电荷移动。
5. 电流的发展史
19世纪被称为“科学的世纪”,电工学的诞生为它增添了异彩。1800年A.G.A.A.伏打发明了伏打电堆,使人类首次获得持续稳定的电源,促进了电学的研究转向电流,并且开始了电化学、电弧放电及照明、电磁铁等电能应用的研究。19世纪中期电报的发明,促进了近代大型技术工程的诞生。1866年在历尽重重挫折之后终于建成了长达3700公里横跨大西洋的海底电报电缆。电报的发明,推动了社会经济和公共事务的交流,促进了电工基础理论与实验技术的发展,带动了电工制造业以及近代管理企业,提出了新型技术人才培养的要求,是电工发展史中重要的一页。
1831年M.法拉第发现电磁感应定律,开始了电磁科学与技术的重大飞跃。这一定律的发现不仅使静电、动电(电流)、电流与磁场的相互感生等一系列电磁现象达到了更加全面的统一的认识,而且奠定了机电能量转换的原理基础。1873年,J.C.麦克斯韦导出描述电磁场理论的基本方程──麦克斯韦方程组,成为整个电工领域的理论基础。发电机的发明实现了机械能转换为电能的发电方式,冲破了化学电源功率小、成本高、难以联网等限制,征服了自然界蕴藏的神奇的动力,预告了电气化时代的来临。
发电和用电是一个连续生产的整体。必须扩大用电范围才能使发电从社会需要获得发展动力。与发电机的发明过程同时,电照明、电镀、电解、电冶炼、电动力等工业生产技术纷纷成熟,孕育了发电、变电、输电、配电、用电联为一体的电力系统的诞生。19世纪90年代三相交流输电技术的发明成功,使电力工业以基础产业的地位跨入了现代化大工业的行列,迎来了20世纪电气化的新时代。
现代科学技术和工业的发展是基础理论研究、应用研究、技术开发紧密结合的过程。科学技术综合化的发展趋向日益明显,必须使个体研究转向集体研究,正是电工的成长,率先踏上这一必由之路。1876年,T.A.爱迪生创办了世界上第一个工业应用研究实验室。在这个被人们赞誉的“发明工厂”里,他组织一批专门人才分工负责,共同致力于同一项发明,打破了以往只是由科学家单独从事研究发明的传统。这一与近代科学技术和生产力发展水平相适应的技术研究和开发的正确道路,显示出巨大的活力,推动了电力生产与电工制造业的迅猛发展,也开创了基础科学、应用科学、技术开发三者紧密结合、协同发展的先河。
6. 电流的走向特点
答:电流优先走向原则是走电阻小的,距离近的。电路计算问题,必须遵循的规律一:
串联电路:电流I处处相等, I=I1=I2。
串联分压:U1: U2 = R1:R2 , U总=U1+U2。
串联总电阻:R总=R1+R2,电阻越串越大。
并联电路:电压处处相等 U1=U2=U电源。
并联分流:I1 : I2 = R2 : R1, I干路=I1+I2。
并联总电阻:R=R1R2/R1+R2,电阻越并越小。
无论串并联,任一电阻增加,总电阻增加。
规律二:
串联电路,一断都断。
并联电路,一短都短。
规律三:
电流法作用:
①判断串并联电路。
②用于连接实物图。
③用于连接电路图。
7. 电流从何而来
电表的额定电流规格是根据国家电网公司发布的企业标准《单相智能电能表技术规范》和《三相智能电能表技术规范》中的规定而来的。单相电表的有两种电流规格,为5(60)A和10(100)A;三相有三种电流规格,为5(60)A、1.5(6)A和0.3(1.2)A,分别用于低压和高压用电环境。
8. 电流是咋样产生的
电流是因为电子定向移动而产生的。电流是一种宏观现象,我们在外面用电流表一测,能看到方向、大小。而电子移动是一种微观行为。涉及到原子物理的内容。电子群体都向一个方向移动,宏观上看来就是产生了电流。电流方向定义是:正电荷移动的方向.也即电子运动的反方向。但真正能流动的是电子.但电子带负电荷.正电荷是不会移动的.电子围绕正电荷运动。电子运动是高速、频繁的;而正电荷不能高速频繁运动,只是在振动。物质的正电荷,是物质分子中的原子的原子核中的质子所带,显然,原子核的质量远远大于电子,在同样的力的作用下,显然应该是电子运动。电子和正电荷的移动,都是电流。物理学中规定,正电荷移动的方向,就是电流的方向。你可以把电子看做-,质子(也就是正电荷)看做+。从数学的观点上看,-向做运动,相当于+向右运动。所以,电子的电流总于电子移动方向方向相反。因为固体的原子比较紧密,所以原子核运动不容易。电流是电荷的定向运动,在电场力作用下能作定向运动的带电粒子称载流子,电流就是载流子在电场力作用下的定向运动。金属导体中的载流子是自由电子,金属导体中的电流就是自由电子的流动,以上是物理学中电学对电流的解释。这么详细的解释,应该没问题了吧。
9. 交流电电流走向
交流电是指:电流的大小、方向随着时间而发生“周期性”变化的电流,即被称为交流电。那么大小这个概念也就是在“单位时间内”电流在发生着从某一个值到另一个值的变化,也就是电流的大小在发生着变化;再说到方向问题,也是指在“单位时间内”,对应于电源的某一端,电流的流向或者说“极性”,在从“正极”到“负极”发生着“周期性”的变化;这两个变化的现象(或者称为“因素”)的“组合”而成的电流,就被称为交流电。由此原理可见,并不是指“东西向”或者“南北向”的方向问题,而是指电流在导体内流动时,也就是在组成电流的“闭合回路”中,某一端的“电位”,在“单位时间内”发生着大小从“零”——“正的上升值”——“正的最大值”——“正的下降值”——“零”——“负的上升值”——“负的最大值”——“负的下降值”——“零”的周期性变化,这个电流就叫做交流电。
10. 关于电流的形成
电荷的定向移动形成电流。要形成电流,首先要有自由移动的电荷,即自由电荷。金属中的自由电子,酸、碱、盐的水溶液中的正离子和负离子,都是自由电荷。
(1)电荷的定向移动产生电流,不论是正电荷(阳离子,半导体中的空穴)还是负电荷(阴离子,电子)。导电的是金属或者半导体器件的话原子是不会发生化学变化的,因为失去了的电子还会从别的地方补回来。 但是如果导电的是离子,那么离子在电极处是会电离成原子而附着在电极上的,发生化学变化。
(2)正电荷也会移动的,最容易想象的就是阳离子,在导电溶液中移动。规定正电荷移动方向为电流方向是因为方便,如计算的时候你把负电荷代入计算就得到负值,可知电流方向是与负电荷移动方向是反向的。
(3)电池提供电压。在电源电压之下,导体内产生电场,电荷在电场的作用下移动,形成电流。但是电流要持续,那么电池必须提供电子,否则导线内的电子都跑光了!但是导线中的电子又跑到哪里去了呢?毫无疑问跑到电源去了。所以电子从电源跑出来又跑回到电源去,电路断开后导线不带电,可见导线的电子没加没减,那么电池的电子也必然没多没少。所以电池不提供电子不消耗电子。电池只提供电压。