当前位置:主页 > 色彩搭配 > 正文

流行动力学(动力学扩散)

1. 动力学扩散

  水合:英文[hydrate]释义:表示水与包括细胞物质在内的亲水物质缔结的一般倾向。水合的程度和强度取决于许多因素,包括非水成分的本质,盐的组成,PH和温度。水合是放热的过程  水与另一物质分子化合成为一个分子的反应过程。水分子以其氢和羟基与物质分子的不饱和键加成生成新的化合物,此种合成方法在有机化工生产中得到应用。水以水分子的形式与物质的分子结合形成复合物(如盐类的含水晶体,烃类的水合物等)的过程,也可广义地称为水合。  扩散:英文名称:diffusion;dispersion;dispersal定义1:分子运动(分子扩散)或涡旋运动(涡动或湍流扩散)所造成的某一保守属性或所含物质向四周的扩展和蔓延。所属学科:大气科学(一级学科);动力气象学(二级学科)  定义2:微粒子(包括原子和分子)在气相、液相、固相或三者之间,由高浓度向低浓度方向迁移,直到混合均匀的物理运动现象。所属学科:地理学(一级学科);环境地理学(二级学科)  定义3:昆虫群体因密度效应或因觅食、求偶、寻找产卵场所等由原发地向周边地区转移、分散的过程。所属学科:昆虫学(一级学科);昆虫生态学(二级学科)  定义4:通过分子运动或流体紊动的随机分散作用使原本分布不均匀的流体属性及其含有物趋于局部均化的过程。所属学科:水利科技(一级学科);水力学、河流动力学、海岸动力学(二级学科);水力学(水利)(三级学科)

2. 扩散的动力

迁移和转化有物理、化学、生理等方面的原因,简单分析如下 物理方面:扩散动力条件(风、水流等)、浓度(感觉是浓度越高势能越大、迁移越快) 化学方面:污染物自身的稳定性、发生反应降解的环境条件 生理方面:生态系统的净化能力、污染物的毒性和生物耐受性、亲和力等等 纯属个人见解,而且本人不学环境,仅供参考。呵呵

3. 动力学扩散系数

珠光体的温度影响:

1、片状珠光体中相邻两片渗碳体(或铁素体)中心之间的距离称为珠光体的片间距。

2、温度是影响片间距大小的一个主要因素。随着冷却速度增加,奥氏体转变温度的降低,也即过冷度不断增大,转变所形成的珠光体的片间距不断减小。

3、碳素钢和合金钢的珠光体片间距与形成温度之间的关系。当过冷度很小时有近似的线性关系,但总的来看是非线性的。有些人碳素钢中珠光体的片间距与过冷度的关系处理为线性关系:珠光体的片间距和过冷度关系如下:S0=C/△T其中:C=8.02×103(nm·K);S0:珠光体的片间距(nm);△T:过冷度,即珠光体转变温度与临界点A1之差。影响珠光体转变动力学的因素即是影响形核率和长大速度的因素:内因:化学成分、组织结构;外因:加热温度、保温时间。1、化学成分的影响(1)碳含量的影响:亚共析钢:随含C量增加,先共析F速度减慢,使P转变速度减小。原因:随含C量增加,F形核率减少,F长大时所需扩散离去的C量增大。过共析钢:随含C量的增高,渗碳体形核率越大,碳在A中的扩散系数增大,P转变速度增大。过共析钢不完全奥氏体化更易发生珠光体转变。奥氏体成分的不均匀性和过剩相均加速珠光体转变。(2)合金元素的影响:除了Co以外,其它所有的合金元素都使“C”曲线右移;除了Ni、Mn以外,其它常用合金元素皆使珠光体转变的“鼻尖”温度上移。原因:合金元素的自扩散、对碳扩散的影响,对相变临界点的影响。2、加热温度和保温时间的影响加热温度低、保温时间短,将加速珠光体的转变。原因:A成分不均匀、或有未溶渗碳体,有利于形核。3、奥氏体晶粒度的影响A的晶粒越细小,P的形核部位越多,越促进P转变。细小的A晶粒也将促进先共析相的析出。

4、应力和塑性变形的影响对奥氏体施加拉应力,将加速珠光体的转变;对奥氏体施加压应力,将减慢珠光体的转变。

4. 热力学扩散

  1)风(动力因子)  空气的水平运动称为风。风对大气污染物的输送扩散有着十分重要的作用。风对大气污染物起整体输送作用;风对大气污染物有冲淡稀释作用;在大气边界层,风切变还影响湍流强度及性质,对扩散产生间接作用;其他气象因子(如大气稳定度等)都是通过风及湍流间接影响空气污染的。  2)大气湍流(动力因子)  大气湍流是指气流在三维空间内随空间位置和时间的不规则涨落,伴随着流动的涨落,温度、湿度、风乃至大气中各种物质的属性的浓度及这些气象要素的导出量都呈无规则涨落。换言之,空气的无规则运动,谓之大气湍流。湍流具有随机性。  大气湍流是大气的基本运动形式之一。大气湍流对大气中污染的扩散起着重要作用,湍流扩散是空气污染局地扩散的主要过程,是污染物浓度降低的主要原因。大气湍流的主要效果是混合,它使污染物在随风飘移过程中不断向四周扩展,不断将周围清洁空气卷入烟气中,同时将烟气带到周围空气中,使得污染物浓度不断降低。  3)大气的温度层结(热力因子)  温度是决定烟气抬升的一个因素,它的的垂直分布决定了大气层结的垂直稳定度,直接影响湍流活动的强弱,与空气污染有密切的联系,支配大气污染物的散布。  大气中的温度层结有四种类型:①正常分布层结(即递减层结),气温随高度增加而递减,这种情况一般出现在晴朗的白天风不太大时,有利于大气污染物的扩散。②中性层结。③等温层结,气温不随高度而变化,这种情况出现于多云天或阴天。不利于大气污染物的扩散。④逆温层结,气温随高度的增加而增加,这种现象一般出现在少云、无风的夜间。逆温层是非常稳定的气层,阻碍烟流向上和向下扩散,只在水平方向有扩散,处于逆温层中的气态污染物、气溶胶粒子(烟、尘、雾)等不能穿过逆温层,而只能在其下面积聚或扩散,在空气中形成一个扇形的污染带,一旦逆温层消退,还会有短时间的熏烟污染。  4)大气稳定度  大气稳定度指整层空气的稳定程度,是大气对在其中作垂直运动的气团是加速、遏制还是不影响其运动的一种热力学性质。当气层受到扰动,若原先是不稳定气层,则扰动、对流和湍流容易发展;若原来是稳定气层,则扰动、对流和湍流受到限制;若原先是中性气层,则由外界扰动所产生的空气微团运动,既不受到抑制又不能得到发展。因此,大气不稳定,湍流和对流充分发展,扩散稀释能力强,有利用污染物扩散。我国目前把大气稳定度分为六类,即强不稳定(A)、不稳定(B)、弱不稳定(C)、中性(D)、较稳定(E)、稳定(F)。其中强不稳定(A)、不稳定(B)、弱不稳定(C)三类稳定度有利于污染物的扩散,中性(D)、较稳定(E)、稳定(F)三类稳定度不利于污染物的扩散。  5)混合层高度  混合层是指边界层中存在的湍流特征不连续界面以下的大气层。混合层内一般为不稳定层结,铅直稀释能力较强。混合层高度即从地面算起至第一层稳定层底的高度。混合层高度实质上是表征污染物在垂直方向被热力湍流稀释的范围,即低层空气热力与湍流所能达到的高度。混合层高度越高,表明污染物在铅直方向的稀释范围越大,越有利于大气污染物的扩散。混合层高度随时间变化,在一天中,早晨混合层高度一般较低,不利于大气污染物在铅直方向的扩散,而午后混合层高度达到最大值,有利于大气污染物在铅直方向的扩散。

5. 动力学扩散模型

轴向扩散模型:主体流动为平推流,但叠加一涡流扩散。涡流扩散遵循费克扩散定律且在整个反应器内扩散系数为常数。

通过停留时间分布实验数据得到概率函数F(θ),然后求出概率密度函数E(θ),数学期望跟方差,然后算出Pe,结合动力学方程算出出口转化率Xa。

6. 扩散动力学范围和化学动力学范围

因为动力学控制是指反应速度由该反应的速率决定;扩散控制是指反应速度由反应体系的扩散速率决定.生成物不断向外围扩散,此间涉及两个过程,一个是反应,一个是扩散;反应的速度由该反应的最慢步骤决定,一个反应如果反应速度小于反应物(或生成物)的扩散速率,则该反应为动力学控制;反之如果扩散速率小于反应速度,则为扩散控制.

7. 扩散是动力学还是热力学

扩散现象是指物质分子从高浓度区域向低浓度区域转移直到均匀分布的现象,速率与物质的浓度梯度成正比[1]。扩散现象是一个基于分子热运动的输运现象,是分子通过布朗运动从高浓度区域(或高化势)向低浓度区域(或低化势)的运输的过程。它是趋向于热平衡态的驰豫过程,是熵驱动的过程。由于扩散作用的速率和混合物的浓度梯度一般不太大,因此通常可以用近平衡态热力学理论进行处理。

8. 流体力学扩散

首先,需要注意的是这两种传质概念只有在从宏观角度研究问题的时候才有意义。扩散传质Diffusion的动力是浓度/化学势梯度,对流传质Advection的动力是整体流体流动,两种传质分别对应对流-扩散方程的两项。

另外,这种区别一般在稀溶液中较为容易讨论,因为溶液速度可以认为等于溶剂速度,如果是浓溶液或气体混合物,仅仅是分子扩散也可以导致系统整体的流动,两者的区别也就不是那么分明了。

9. 扩散动力学方程

如果问世界是否有一门学问,可以被称为世间其所有其它学问的发动引擎,有的人可能说是数学,有的人可能说是哲学,更或者神学,而依我看,它叫动力学。

为什么动力学是一切学科的引擎?因其简洁透彻,却法力无边。 动力学是一套关于准确把握事物变化的因果关系的方法,不是靠占星而是靠数学。你可以想象,大法师手里不再拿水晶球,而是一张纸一个笔,画几条线,就预测了整个世界。这归功于古希腊科学的瑰宝-量化和几何的思维,如同毕达哥拉斯所说,世界无非数量关系。

英语管动力学叫dynamics,或叫mechanics,岂不是汽车修理工的学问? 没错,动力学研究的就是事物运动变化的因果关系。在它的世界观里,世界是一张相互作用的大网,而事物运动变化的原因,都可以从这张大网上找出。

动力学最初的一鸣惊人,是空前绝后的牛顿三定律的提出,而牛顿第二定律又是三定律的核心,只要有高中数学基础的人就知道,它是力与加速度的关系,看起来不起眼,但是它包含了整个动力学的核心思维,是什么? 是受力分析吗? No。 第二定律的本质,是预测,而预测无穷尽的未来,你不需要太多信息,只需要知道此刻和与之最近的下一刻的关系(微分的思维,下一刻是一个极限的概念,恰好脱离此刻的时刻),所谓s(t+1)=f(s(t))。s代表state,即状态, f就是由此刻的状态得到下一刻的状态的迭代关系。有了f和初始时刻的s,未来即确定。

这个方法的威力说多大也不夸张,想象一下,如果你是上帝,这是一个多么省事的方法,你无须操心大千世界芸芸众生的未来,只需要设定一个f,叫它不停迭代,就可以管理整个宇宙了。牛顿发现了这个上帝偷懒的方法,于是人类把握了上帝的力量。

注:牛顿定律,远没你的高中老师想象的简单,F,m,a背后,那可是一整套宇宙观

在机械运动的问题里,s是物体的位置和速度,而f是由物体之间的几何关系表达的(力同样依赖于物体的位置或速度),所以几何关系成为动力学问题的核心。

第二定律的成功就不用多说,但是在最初的两百年,这种成功也就是机械领域,脱离了机械运动,似乎人们不太有办法使用几何关系预测变化。

而从19世纪开始,动力学的理论开始由机械运动的领域逐步向其它领域扩散,最初是物理领域内的扩散,到20实际以后又开始向物理领域外延伸,一部现代科学发展史,可以看做动力学深入各个学科的历史。

一切的改变,基于两个如雷贯耳的名字,拉格朗日和哈密顿。 这两个人奠定了整个分析力学,但是分析力学最初的目标不是放大动力学的应用, 而是对更抽象的数学形式的追求(其实形式亦决定本质),由此得到牛顿定律2.0版。以前的牛顿力学研究真实空间里的运动,而这两个人把空间的概念拓展为抽象的广义空间。广义空间是和广义坐标结合在一起的(generalized cooridnates),这两个人想到,既然物体的状态由位置和速度共同决定,而且它们是独立的,那么何不把速度也看做一种抽象的位置,那么物体速度的变化就可以看做广义坐标的里位置的变化,那么,物体状态的全部信息,均可以作为坐标信息表述,而动力学的全部,都可以用几何关系表达。

看起来,这像是具有几何强迫症的书呆子想出来的把戏,但是历史将证明,往往是书呆子改变了世界。

为什么一个小小的数学把戏改变了科学史?

广义坐标的应用,使得动力学的经纬-位置和速度取得了对等的地位,我们通常把位置和速度构成的空间叫做相空间(一个全新的6维空间,包含位置三维和速度三维)。如果用一句话描述相空间的好处,就是真实空间里你只能看到物体运动的那条轨迹,而在相空间里,你可以看到物体所有可能运动的轨迹。或者说,相空间把空间从三维拓展到六维,而这个空间里我们看到不仅是我们生活的那个宇宙,而是所有可能宇宙的总和。

为什么? 因为,物体所有可能的状态均是相空间里的一个点(位置+速度),在牛顿的世界观里,只要初始状态确定,那物体运动的轨迹随之确定,如果说此刻物体的状态是一个点,那么它的运动过程就是这个空间里的一条曲线。而如果物体的初始状态具有不确定性,它就不是一个点,而是围绕某个点的一小块区域,而物体的运动轨迹也不再是一条曲线,而是流形(flow=曲线的集合),类似于流体力学里液体。

我们所说的历史大潮,就是相空间里物体运动轨迹的集合。

分析力学的伟大正在于把物体在三维空间里的运动化作了高维空间里的流。表面上看这样的方法使运动失去了直观性,但实质上,却更接近了运动的本质。在这个观点上,越抽象,就越真实,应用就越广泛。

高维空间的好处有什么呢?最重要的,他使我们由关注研究物体的某一条运动轨迹,变为了同时研究物体所有可能的轨迹,所有可能的历史,所有可能的未来。也就是说三维空间是我们的宇宙,而分析力学的高维空间却具有把握的却是平行宇宙,那些符合物理定律的所有宇宙。这个思维意想不到的开拓了整个现代物理,从统计到量子力学。

在相空间里我们可以得到一个叫哈密顿的函数(H), 相互作用不需要在用力表达,画很多的箭头做受力分析,而是用H,H最简单的理解是能量,由动能和势能共同组成,由广义坐标唯一确定。在一个能量守恒的系统里,它包含了系统变化的全部信息。

注:能量这个物理最重要的概念在不同领域里具有不同含义,但是最根本的意义还是作为哈密顿量的表述, 它包含了物体在相空间里的全部动力学信息,既包含此刻的信息,又包含相邻下一刻的信息。

由此提出牛顿方程的2.0版哈密顿方程,可以看做动力学问题的标准形式:

注:p代表物体的动量(速度*质量),q代表位置。这个方程说的是,p和q在时间上的变化率等于H相对p和q在相空间上的偏微分

p代表物体的动量(速度*质量),q代表位置。哈密顿方程比牛顿方程更加清晰的表述了动力学的本质,它告诉我们要预测物体的运动轨迹,核心在于了解下一刻的状态是怎么从此刻衍生出来的,而衍生的法则就是一个微分算符作用于物体此刻的状态(由哈密顿量表述),这个算符不停作用,就衍生了整个运动轨迹。

而哈密顿方程背后有一个更为惊人的基本原理:就是最小作用原理-或为哈密顿原理:它告诉我们,有一个叫作用量的函数,这个函数的特点是把物体在相空间的运动轨迹给对应为一个数。最小作用原理告诉我们,真实物体的轨迹,就是让这个数最小的那一个。

这个原理的伟大不亚于能量守恒定律,它告诉我们所谓物理的真实,就是遵循最小作用原理。几乎所有物理定律及四大力学(经典力学,电动力学,统计力学,量子力学)均可统一于这个原理,它是宏观物体的机械运动和微观系统的状态变化的桥梁。

研究电子,光子的运动,牛顿定律用不上,但是牛顿定律的灵魂却以哈密顿的形式在所有其他体系里复生。它告诉我们为什么光与台球,都要沿直线传播,都有类似于反射和折射的现象。而为什么在广义相对论里,光又可以不沿直线传播。

动力学的威力在这里已经淋漓尽致了,它不仅解释那些我们看见了的世界,还告诉我们没有看见的世界是什么,什么是有可能发生的,即使我们没有看到,只是因为我们看的时间还不够长。

它是一种超越性的思维,让我们绕过事物的表现,直抵本质,两种截然不同的领域,只要它们具有结构相同的微分方程,它们就是一回事。在动力学的世界,无论是太阳升起降落,还是交流电的震荡,甚至我们的心跳与王朝的更替,只要归于同类方程引导的周期运动,就是同质的。这就如同万有引力定律,苹果落地与地球绕日运动, 在动力学的角度里只是初始速度不同而已,本质都是引力。

注:所有周期性的运动在相空间里都具备同样的范式-同心圆环。图中描述了一个一维运动,位置和速度构成二维的相平面,周期运动的本质即相空间上位置和速度的此消彼长。

思维的高屋建瓴,因果关系的表述之清晰,决定了动力学终将不止步于物理,而它也的确席卷了那些我们物理不能染指的领域,如生物学,社会学,经济学,甚至语言学,心理学,每当动力学进入一个领域,我们就可以说我们真正理解了那个领域,而之前,最多只是描述而已。

然而这个过程却只是进入20世纪才开启,为什么?

原因在于,相比物理系统,那些领域都显得太复杂了,而复杂的原因有三,一是元素太多,二是非线性,三是能量不守恒。所谓元素多,好理解,无论是生物系统,还是社会,都是又无数的小单元组成的,如细胞,人。而非线性就较难表述。

首先,什么是线性?线性=可加和性。物理系统往往是线性的。如在牛顿力学里,力是可以加和的,物体受的合力是所有施加在物体的力的和,每一种力混合在一起时候都和它们单独存在时候一致。

线性显然在生活或社会这样的系统上不成立,你并不是把一堆细胞放在一起就有了生命体,也不是把一堆人放在一起就有了社会,细胞组成生命或人组成社会,都是在更大尺度上形成了新的组织。 而这些组织所呈现的性质,完全不能等价于组成它们的单元的性质的加和。

至于第三点能量不守恒,生物或社会系统都是典型的耗散系统,这些系统的本质特点即不停的与外界交换能量和信息,一旦这些系统能量守恒往往意味着已经死亡。能量不守恒使得哈密顿方法根本无法进入这些系统,那些复杂的积分公式在真实的复杂性面前望而却步了。

注:开放性的复杂系统,能量信息的输入和输出,以及涌现性(非线性叠加)构成了它的本质。

这些传统物理方法难以触及的领域,在很长时间里无人问津,直到20世纪几个革命性的理论提出后。这些方法包括非平衡态的统计物理和相变理论,复杂网络,非线性动力学, 混沌论,协同论,博弈论等。而这些方法综合在一起,衍生了一门叫做复杂系统的新学科,它使得动力学进入了这些物理不可染指的理论。

注:建立在多门新兴学科基础上的复杂科学

复杂科学使得动力学进入了生物学,进入了社会学,进入了经济学,无论生命过程,还是金融运作,都可以表述为相空间里的流形。而微分几何,拓扑,统计物理,有朝一日将会成为生物学家,经济学家,和股票分析师的共同语言。

而动力学的方法,给人类使用计算机大规模解决复杂问题奠定了基础。计算机模拟的一般方法即先列出一个系统里的变量(相空间的维度),然后需找“运动法则” - 此刻与相邻时刻状态的迭代关系,并列出方程。这正是构建一个基本的动力学系统的方法。而计算机解决这些问题的过程,其实就是检验我们的动力学系统是否正确。如果我们我们抓住了动力学系统的全部要点,计算机的模拟甚至会比真实更真实。当然现实中,我们永远都要做近似。

动力学的世界观,将彻底刷洗你的三观。你将一下子看穿那些别有用心的历史学家的谎言,比如中国历史为什是循环的,而西方会产生螺旋上升的文明。也许之前的历史书告诉你每个王朝到一定时候,会出一位昏君,导致王朝灭亡,而动力学告诉你,中国社会只有一个动力学模型,就是帝制循环,而好皇帝坏皇帝,都是附会。

动力学会告诉你,为什么无论是生物学物种间的竞争,还是市场经济,最终都将导致寡头的产生。

动力学会告诉你,为什么如果你的东西多了,忘得就快,而为什么睡眠的大脑可以巩固记忆。

动力学会告诉你,生命到底是什么,为什么它是速朽的。它会让你放弃寻找类似人的外星人的想法,而去寻找生命的范式,无论是在星系之间还是电子管里。

10. 用动力学粒子理论解释扩散

1.扩散运动是粒子从浓度高的地方向浓度低的地方运动。

2.漂移运动是由于外场的加入(如电场)使粒子受力往特定方向运动。

扩散运动:因浓度差而引起载流子从浓度高的区域向浓度低的区域运动。 漂移运动:在内电场的作用下,对方区域内的少数载流子会被吸引过来,形成漂移运动。

11. 扩散动力学范围

一级动力学方程,二级动力学方程,颗粒间扩散方程都是简化的数学模型,实际是通过机理推理假设,设定边界条件得到的偏微分方程。

1、一级动力学是指反应速率与一种反应物浓度呈线性关系,二级动力学指反应速率与两种反应物浓度呈线性关系。

2、颗粒间扩散只是多孔吸附剂吸附过程四个吸附阶段的第三阶段(当然,吸附动力学和化学动力学不是一个概念)。

3、同一类动力学中又有分类,例如:一级、准一级、伪(拟)一级。准一级或伪(拟)一级,准二级或伪(拟)二级,因为不是遵守理想的动力学模型,而是利用某种修正方法得到的新的模型,英文均为pseudo。

今年最流行的服装搭配是什么

2017年服装流行什么颜色

2017春夏男装流行趋势,设计师急需要知道呢。